If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2+w-52=0
a = 3; b = 1; c = -52;
Δ = b2-4ac
Δ = 12-4·3·(-52)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-25}{2*3}=\frac{-26}{6} =-4+1/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+25}{2*3}=\frac{24}{6} =4 $
| 5+28=-2x-28 | | 14m-10=3(4=m) | | 3y+17=5y | | 5x-2/4=-2/8+3x | | 4x-2(4-3x)=3(x-4)-24 | | 3w^2-w-52=0 | | 3/4r=8 | | 5x+28=-2-28 | | 99=c+20 | | 7+2(3x-1)=17 | | w/6+5/8=3/8 | | 3v-2=4v-4 | | 3y+y+17=5y-13 | | 25+9c+c-18=12c+16-2c-9 | | (180)8=-80x | | w^2-8w-10=10 | | 4(1−p)=−4p+4 | | 2x+9=3x-36 | | 1/2x+10=-2x+1,x | | 763=m-183 | | 36=13n4n | | 3/4•x+6=9 | | 10y-10y=-11 | | -450=-3n | | (1/2x)-(-4)=16 | | F(1)=-5x^2+40x+73 | | 180•8=-80x | | 14x+20x-8+1=-5x+1-8 | | 1/2x+10=-2x+1 | | 22+5p+7p-14=20p+16-8p-8 | | q+7=-20 | | 0.1=x/250+x |